점근 국소 평탄 공간

위키백과, 우리 모두의 백과사전.

미분기하학에서 점근 국소 평탄 공간(漸近局所平坦空間, 영어: asympotically locally flat [ALF] space)은 무한대에서 3차원 유클리드 공간오비폴드 위의 원군 주다발로 수렴하는 4차원 초켈러 다양체이다.

정의[편집]

4차원 초켈러 다양체 완비 리만 다양체이며, 리만 곡률이 무한대에서 0으로 수렴하며, 다음 조건을 만족시킨다면, 점근 국소 평탄 공간이라고 한다.[1]:Definition 3.1

  • 어떤 콤팩트 집합 및 유한군 원군 주다발 및 그 위의 주접속 에 대하여, 미분 동형 이 존재하며, 이 미분 동형 아래 의 리만 계량이 다음과 같은 꼴이다.

분류[편집]

점근 국소 평탄 공간은 사용된 유한군 에 의하여 분류되며, (2차 순환군)이 가능하다. 인 경우는 순환군형(循環群型, 영어: cyclic type) 또는 A형이라고 하며, A−1, A0, A1, …가 있다. 인 경우는 정이면체군형(正二面體群型, 영어: dihedral type0 또는 D형이라고 하며, D0, D1, …가 있다.

순환군형[편집]

순환군형은 기호로 An의 꼴이며, 여기서 n은 −1 이상의 정수이다. 일반적으로, 순환군형 점근 국소 평탄 공간은 기번스-호킹 가설 풀이로 구성된다. 일반적으로, 3차원 유클리드 공간 속에 개의 점 (너트의 위치)

을 골랐을 때, 퍼텐셜

을 사용하여 기번스-호킹 가설 풀이를 구성하면 An형의 점근 국소 평탄 공간을 얻는다. 여기서 은 U(1) 주다발의 올의 크기에 반비례하며, 리만 계량 전체에 적절한 상수를 곱하면 1로 놓을 수 있다.

즉, 그 모듈라이 공간

이다. 이는 개의 점 가운데, 유클리드 공간의 등거리 변환을 가한 것이다. 추가의 1차원은 에 해당하며, 리만 계량의 스칼라배에 해당한다.

정이면체군형[편집]

정이면체군형은 기호로 Dn의 꼴이며, 여기서 n은 음이 아닌 정수이다. 이 경우 여러 가지 구성이 존재한다. 특히, 퍼텐셜

을 통한 기번스-호킹 가설 풀이를 생각하자. 이는 인 경우 퍼텐셜이 음수가 돼 정의되지 않지만, 이 부분을 무시하면, 이는 에 대하여 대칭이므로 위의 기번스-호킹 가설 풀이를 정의한다. 만약 이 충분히 크다면, 가운데에 D0 공간을 이어붙이면 이는 Dn 점근 국소 평탄 공간을 근사하며, Dn이 되도록 변형할 수 있다.[1]:Remark 3.7

즉, 이 경우 마찬가지로 모듈라이 공간은

여기서 한 차원은 에 의한 것이며, 리만 계량에 상수를 곱한 것에 해당한다.

성질[편집]

위상수학적 성질[편집]

점근 국소 평탄 공간의 위상수학적 성질은 다음과 같다.[1]:§3.2.1, §3.2.2

점근 국소 평탄 공간 기본군 베티 수
A−1 무한 순환군 Cyc(∞) (1,1,0,0,0)
An (n≥0) 자명군 1 (1,0,n,0,0)
D0 2차 순환군 Cyc(2) (1,0,0,0,0)
Dn (n≥1) 자명군 1 (1,0,n,0,0)

특히, A−1이므로, 원 호모토피 동치이다. 토브-너트 공간 A0유클리드 공간 미분 동형이다.

기하학적 성질[편집]

점근 국소 평탄 공간의 킬링 벡터장의 수는 다음과 같다.

점근 국소 평탄 공간 킬링 벡터장의 수
A−1 4
A0 4
A1 2
An (n≥2) 1
D0 3

이는 ISO(3)의 군의 작용의 안정자군의 차원 + 원다발 올 방향의 킬링 벡터 1개로 계산할 수 있다.

[편집]

응용[편집]

점근 국소 평탄 공간은 일반 상대성 이론끈 이론에 자주 등장한다. 이는 이들이 초켈러 다양체이므로, 초대칭 게이지 이론의 모듈라이 공간이나 일반 상대성 이론의 해를 이루기 때문이다.

각주[편집]

  1. Foscolo, Lorenzo (2019). “ALF gravitational instantons and collapsing Ricci‐flat metrics on the K3 surface”. 《Journal of Differential Geometry》 (영어) 112 (1): 79-120. arXiv:1603.06315. doi:10.4310/jdg/1557281007. MR 3948228. Zbl 07054920.